
Unit 5: Biomedical Engineering

Outcome: Students will predict if a material is suitable for orthopedic implants using
simple material properties.

Learning Objectives

Students will:

1. Understand the role of materials in medical implants.

2. Learn about common properties that make materials bio-compatible.

3. Use the Materials Project database to explore real materials.

4. Train a machine learning model to classify materials.

5. Predict the suitability of a new material for implants.

 Materials Needed

● Google accounts + Colab access

● API key from Materials Project (teacher can provide)

● Provided dataset (based on curated Materials Project data)

Lesson Structure

Introduction (25 minutes)

1. You will need to do some research to determine where these bones are located
and the common name by which they are known.

Scientific Name Common Name Scientific Name Common Name
Cranium Metacarpal
Mandible Phalanges
Clavicle Sacrum
Sternum Coccyx
Spinal Column Pelvis
Scapula Femur
Humerus Patella
Radius Fibula
Ulna Tibia
Ribs Tarsal
Carpal Metatarsal

2. Research a material selected for a real world application of a joint based upon
the following information. Define each property and the maxima and minima

o Ductility
o Load
o Fatigue
o Friction
o Modulas of Elasticity

3. List three features (properties) that make a good implant material

4. List the chemical formula of three metallic implant materials

5. What is the “Materials Project”?

6. Define the following properties from the Materials Project:

"material_id",

"density",

"elements",

"Nelements",

 "Volume",

 "band_gap",

 "Energy_above_hull",

 "Is_magnetic",

 "homogeneous_poisson"

7. What is machine learning in this context?

Activity in Google Colab (60 minutes)

 Cell 1: Introduction (Text)
Create a Colab Notebook with this text header
Predicting Orthopedic Implant Materials with ML

We'll use real data from the Materials Project to train a machine learning model to
identify suitable materials for implants.

 Cell 2: Install and Import Libraries

!pip install pymatgen pandas scikit-learn -q

!pip install mp-api --upgrade

from mp_api.client import MPRester

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

Cell 3: Load Material Data from Materials Project and find Properties:
Choose two metal elements from your list above and the following features (properties)
material_id, band_gap (eV), density (g/cc), elasticity_modulus (GPa), poisson_ratio

Define these features here:

from mp_api.client import MPRester

import pandas as pd

API_KEY = "btxkK35J5mjY39BXe9DEHE7mBPniUsFP"

Step 1: Get metallic materials with Co and Ti

with MPRester(API_KEY) as mpr:

 summaries = mpr.materials.summary.search(

 elements=["Co", "Ti"],

 band_gap=(0, 0.1),

 is_stable=True,

 fields=["material_id", "band_gap", "density"]

)

material_ids = [entry.material_id for entry in summaries]

Step 2: Get elasticity properties

with MPRester(API_KEY) as mpr:

 elastic_data = mpr.materials.elasticity.search(

 material_ids=material_ids,

 fields=["material_id", "bulk_modulus", "shear_modulus",

"homogeneous_poisson"]

)

Create lookup

elastic_lookup = {

 e.material_id: {

 "poisson_ratio": e.homogeneous_poisson,

 "elasticity_modulus (GPa)": e.bulk_modulus or e.shear_modulus

 }

 for e in elastic_data

}

Merge results

final_data = []

for s in summaries:

 elastic = elastic_lookup.get(s.material_id, {})

 final_data.append({

 "material_id": s.material_id,

 "band_gap (eV)": s.band_gap,

 "density (g/cc)": s.density,

 "poisson_ratio": elastic.get("poisson_ratio"),

 "elasticity_modulus (GPa)": elastic.get("elasticity_modulus

(GPa)"),

 "implant_suitable": "Unknown"

 })

df = pd.DataFrame(final_data)

print(df.head())

Using Gemini and ChatGPTComplete the following program steps and paste in your
program

Cell 4: Prepare the Data (make sure the data is numerical)

 Cell 5: Train the ML Model (use a training set/data set of 80/20 and the Decision
Tree Classifier)

Cell 6: Make Predictions on a New Material or Pull 5 real Ti-based materials, predict
using your model.

Cell 7: Visualize the data (Graphs!!)

a. Scatter Plot: Elasticity Modulus vs Density
 Shows how these properties group materials into implant-suitable or not.

b. Boxplot of Band Gap by Implant Suitability
 Highlights differences in electrical properties that may affect biocompatibility

Cell 7: Interactive Challenges

● Challenge A: Try removing one of the four features and retrain. How does
accuracy change?

● Challenge B: Add “elasticity_modulus / density” as a new feature—does it
improve predictions?

● Challenge C: Use max_depth=3 in your Decision Tree—how does the model
change? (Visualize optional)

Reflection & Wrap-Up

1. How do material properties influence implant suitability?
2. What surprised you about model predictions
3. Is that accuracy high enough for medical-grade decisions?

NGSS Standards

1. HS-PS2-6 – Forces and Interactions

"Communicate scientific and technical information about why the molecular-
level structure is important in the functioning of designed materials."

● Connection: Students study bio-compatible materials and learn how
atomic/molecular structure influences their performance in implants.

2. HS-ETS1-3 – Engineering Design

"Evaluate a solution to a complex real-world problem based on prioritized
criteria and trade-offs..."

● Connection: Students evaluate materials for implants using real-world design
criteria (e.g., strength, toxicity, corrosion resistance) through machine learning.

3. HS-ETS1-4 – Engineering Simulations

"Use a computer simulation to model the impact of proposed solutions to a
complex real-world problem."

● Connection: Students use machine learning models to simulate predictions
about material suitability — mirroring how engineers test materials
computationally before physical trials.

4. Science and Engineering Practices (SEPs)

● Analyzing and Interpreting Data: Students examine material datasets and ML
outputs.

● Using Mathematics and Computational Thinking: Students train and apply a
ML model.

● Obtaining, Evaluating, and Communicating Information: Students interact
with the Materials Project database and explain results.

5. Crosscutting Concepts

● Structure and Function: Central to understanding why certain materials work in
implants.

● Cause and Effect: Students investigate how material properties influence bio-
compatibility.

● Systems and System Models: Students model predictions of complex material
behavior.

Summary Table

NGSS Code Title Relevance to Lab

HS-PS2-6 Structure of Materials Understand why certain materials are
safe for implants

HS-ETS1-3 Evaluate solutions Weigh trade-offs in material design

HS-ETS1-4 Use simulations Predict outcomes with ML

SEPs Analyze data, use
computation

Train and test models

Crosscutting
Concepts

Structure-function,
systems

Materials as systems with properties

Answer Key for Possible Code:

Predicting Orthopedic Implant Materials with ML

!pip install pymatgen pandas scikit-learn mp-api -q

from mp_api.client import MPRester

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

API_KEY = "btxkK35J5mjY39BXe9DEHE7mBPniUsFP"

Step 1: Query basic materials summary for Ti-Co system

with MPRester(API_KEY) as mpr:

 docs = mpr.materials.summary.search(

 chemsys="Ti",

 fields=[

 "material_id", "density", "elements", "nelements", "volume", "band_gap",

 "energy_above_hull", "is_magnetic", "homogeneous_poisson"

]

)

Convert to DataFrame

summary_data = pd.DataFrame([doc.dict() for doc in docs])

Rename homogeneous_poisson to poisson_ratio for consistency

summary_data.rename(columns={"homogeneous_poisson": "poisson_ratio"},
inplace=True)

Define criteria

criteria = {

 "band_gap": (0.5, 2.0),

 "density": (2.0, 10.0),

 "poisson_ratio": (0.2, 0.4),

 "energy_above_hull": (0, 0.1),

 "num_sites": (1, 60),

 "num_magnetic_sites": (0, 20),

}

Step 2: Determine implant suitability

def is_implant_suitable(row):

 try:

 if not (criteria["band_gap"][0] <= row["band_gap"] <= criteria["band_gap"][1]):

 return False

 if not (criteria["density"][0] <= row["density"] <= criteria["density"][1]):

 return False

 if not (criteria["poisson_ratio"][0] <= row["poisson_ratio"] <=
criteria["poisson_ratio"][1]):

 return False

 if not (criteria["energy_above_hull"][0] <= row["energy_above_hull"] <=
criteria["energy_above_hull"][1]):

 return False

 if not (criteria["num_sites"][0] <= row["nelements"] <= criteria["num_sites"][1]):

 return False

 if row["is_magnetic"] and criteria["num_magnetic_sites"][0] == 0:

 return False

 except:

 return False

 return True

summary_data["implant_suitable"] = summary_data.apply(is_implant_suitable, axis=1)

Step 3: Select features

features = ["density", "poisson_ratio", "band_gap", "energy_above_hull", "is_magnetic"]

df_clean = summary_data.dropna(subset=features)

X = df_clean[features]

y = df_clean["implant_suitable"]

Step 4: Train/test split and model

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = DecisionTreeClassifier(random_state=42)

model.fit(X_train, y_train)

Step 5: Evaluate

accuracy = accuracy_score(y_test, model.predict(X_test))

print(f"✅ Model trained. Accuracy: {accuracy:.2f}")

Preview data

summary_data.head()

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

import matplotlib.pyplot as plt

Step 6: Confusion Matrix

y_pred = model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)

disp.plot()

plt.show()

