
Unit 5: Biomedical Engineering  
 
Outcome: Students will predict if a material is suitable for orthopedic implants using 
simple material properties. 
 

Learning Objectives 

Students will: 

1. Understand the role of materials in medical implants. 
 

2. Learn about common properties that make materials bio-compatible. 
 

3. Use the Materials Project database to explore real materials. 
 

4. Train a machine learning model to classify materials. 
 

5. Predict the suitability of a new material for implants. 
 

 

 Materials Needed 

● Google accounts + Colab access 
 

● API key from Materials Project (teacher can provide) 
 

● Provided dataset (based on curated Materials Project data) 
 

 

Lesson Structure 

Introduction (25 minutes) 
 
 
 
 
 



1. You will need to do some research to determine where these bones are located 
and the common name by which they are known. 

Scientific Name Common Name Scientific Name Common Name 
Cranium  Metacarpal  
Mandible  Phalanges  
Clavicle  Sacrum  
Sternum  Coccyx  
Spinal Column  Pelvis  
Scapula  Femur  
Humerus  Patella  
Radius  Fibula  
Ulna  Tibia  
Ribs  Tarsal  
Carpal  Metatarsal   
 

2. Research a material selected for a real world application of a joint based upon 
the following information. Define each property and the maxima and minima 

o Ductility 
o Load 
o Fatigue 
o Friction   
o Modulas of Elasticity 

 

3. List three features (properties) that make a good implant material 

 

4. List the chemical formula of three metallic implant materials 
 
 
 

5. What is the “Materials Project”? 

 

6. Define the following properties from the Materials Project: 

"material_id",  

"density",  

"elements",  

"Nelements", 



 "Volume", 

 "band_gap", 

 "Energy_above_hull", 

 "Is_magnetic", 

 "homogeneous_poisson" 

 

7. What is machine learning in this context? 
 
 

 

Activity in Google Colab (60 minutes) 
 

 Cell 1: Introduction ( Text) 
Create a Colab Notebook with this text header 
#  Predicting Orthopedic Implant Materials with ML 
 
We'll use real data from the Materials Project to train a machine learning model to 
identify suitable materials for implants. 
 

 

 Cell 2: Install and Import Libraries 
 
!pip install pymatgen pandas scikit-learn -q 

!pip install mp-api --upgrade 

from mp_api.client import MPRester 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

 
 

 



Cell 3: Load Material Data from Materials Project and find Properties: 
Choose two metal elements from your list above and the following features ( properties) 
material_id, band_gap (eV), density (g/cc), elasticity_modulus (GPa), poisson_ratio 
 
Define these features here: 
 
from mp_api.client import MPRester 

import pandas as pd 

 

API_KEY = "btxkK35J5mjY39BXe9DEHE7mBPniUsFP" 

 

# Step 1: Get metallic materials with Co and Ti 

with MPRester(API_KEY) as mpr: 

    summaries = mpr.materials.summary.search( 

        elements=["Co", "Ti"], 

        band_gap=(0, 0.1), 

        is_stable=True, 

        fields=["material_id", "band_gap", "density"] 

    ) 

 

material_ids = [entry.material_id for entry in summaries] 

 

# Step 2: Get elasticity properties 

with MPRester(API_KEY) as mpr: 

    elastic_data = mpr.materials.elasticity.search( 

        material_ids=material_ids, 

        fields=["material_id", "bulk_modulus", "shear_modulus", 

"homogeneous_poisson"] 

    ) 

 

# Create lookup 

elastic_lookup = { 

    e.material_id: { 

        "poisson_ratio": e.homogeneous_poisson, 

        "elasticity_modulus (GPa)": e.bulk_modulus or e.shear_modulus 

    } 

    for e in elastic_data 

} 

 

# Merge results 



final_data = [] 

for s in summaries: 

    elastic = elastic_lookup.get(s.material_id, {}) 

    final_data.append({ 

        "material_id": s.material_id, 

        "band_gap (eV)": s.band_gap, 

        "density (g/cc)": s.density, 

        "poisson_ratio": elastic.get("poisson_ratio"), 

        "elasticity_modulus (GPa)": elastic.get("elasticity_modulus 

(GPa)"), 

        "implant_suitable": "Unknown" 

    }) 

 

df = pd.DataFrame(final_data) 

print(df.head()) 

 
Using Gemini and ChatGPTComplete the following program steps and paste in your 
program

 

Cell 4: Prepare the Data ( make sure the data is numerical) 

 Cell 5: Train the ML Model ( use a training set/data set of 80/20 and the Decision 
Tree Classifier) 

Cell 6: Make Predictions on a New Material or  Pull 5 real Ti-based materials, predict 
using your model.  

 
Cell 7: Visualize the data ( Graphs!!) 

a. Scatter Plot: Elasticity Modulus vs Density 
 Shows how these properties group materials into implant-suitable or not. 
 

b. Boxplot of Band Gap by Implant Suitability 
 Highlights differences in electrical properties that may affect biocompatibility 

 
Cell 7: Interactive Challenges 



● Challenge A: Try removing one of the four features and retrain. How does 
accuracy change? 
 

● Challenge B: Add “elasticity_modulus / density” as a new feature—does it 
improve predictions? 
 

● Challenge C: Use max_depth=3 in your Decision Tree—how does the model 
change? (Visualize optional) 

 

 

Reflection & Wrap-Up 
 
1. How do material properties influence implant suitability? 
2. What surprised you about model predictions 
3. Is that accuracy high enough for medical-grade decisions? 
 

NGSS Standards  

1. HS-PS2-6 – Forces and Interactions 

"Communicate scientific and technical information about why the molecular-
level structure is important in the functioning of designed materials." 

● Connection: Students study bio-compatible materials and learn how 
atomic/molecular structure influences their performance in implants. 
 

 

2. HS-ETS1-3 – Engineering Design 

"Evaluate a solution to a complex real-world problem based on prioritized 
criteria and trade-offs..." 

● Connection: Students evaluate materials for implants using real-world design 
criteria (e.g., strength, toxicity, corrosion resistance) through machine learning. 
 

 



3. HS-ETS1-4 – Engineering Simulations 

"Use a computer simulation to model the impact of proposed solutions to a 
complex real-world problem." 

● Connection: Students use machine learning models to simulate predictions 
about material suitability — mirroring how engineers test materials 
computationally before physical trials. 
 

 

4. Science and Engineering Practices (SEPs) 

● Analyzing and Interpreting Data: Students examine material datasets and ML 
outputs. 
 

● Using Mathematics and Computational Thinking: Students train and apply a 
ML model. 
 

● Obtaining, Evaluating, and Communicating Information: Students interact 
with the Materials Project database and explain results. 
 

 

5. Crosscutting Concepts 

● Structure and Function: Central to understanding why certain materials work in 
implants. 
 

● Cause and Effect: Students investigate how material properties influence bio-
compatibility. 
 

● Systems and System Models: Students model predictions of complex material 
behavior. 
 

 

Summary Table 



NGSS Code Title Relevance to Lab 

HS-PS2-6 Structure of Materials Understand why certain materials are 
safe for implants 

HS-ETS1-3 Evaluate solutions Weigh trade-offs in material design 

HS-ETS1-4 Use simulations Predict outcomes with ML 

SEPs Analyze data, use 
computation 

Train and test models 

Crosscutting 
Concepts 

Structure-function, 
systems 

Materials as systems with properties 

 

Answer Key for Possible Code: 

#  Predicting Orthopedic Implant Materials with ML 

 

!pip install pymatgen pandas scikit-learn mp-api -q 

 

from mp_api.client import MPRester 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

 

API_KEY = "btxkK35J5mjY39BXe9DEHE7mBPniUsFP" 

 



# Step 1: Query basic materials summary for Ti-Co system 

with MPRester(API_KEY) as mpr: 

    docs = mpr.materials.summary.search( 

        chemsys="Ti", 

        fields=[ 

            "material_id", "density", "elements", "nelements", "volume", "band_gap", 

            "energy_above_hull", "is_magnetic", "homogeneous_poisson" 

        ] 

    ) 

 

# Convert to DataFrame 

summary_data = pd.DataFrame([doc.dict() for doc in docs]) 

 

# Rename homogeneous_poisson to poisson_ratio for consistency 

summary_data.rename(columns={"homogeneous_poisson": "poisson_ratio"}, 
inplace=True) 

 

# Define criteria 

criteria = { 

    "band_gap": (0.5, 2.0), 

    "density": (2.0, 10.0), 

    "poisson_ratio": (0.2, 0.4), 

    "energy_above_hull": (0, 0.1), 

    "num_sites": (1, 60), 



    "num_magnetic_sites": (0, 20), 

} 

 

# Step 2: Determine implant suitability 

def is_implant_suitable(row): 

    try: 

        if not (criteria["band_gap"][0] <= row["band_gap"] <= criteria["band_gap"][1]): 

            return False 

        if not (criteria["density"][0] <= row["density"] <= criteria["density"][1]): 

            return False 

        if not (criteria["poisson_ratio"][0] <= row["poisson_ratio"] <= 
criteria["poisson_ratio"][1]): 

            return False 

        if not (criteria["energy_above_hull"][0] <= row["energy_above_hull"] <= 
criteria["energy_above_hull"][1]): 

            return False 

        if not (criteria["num_sites"][0] <= row["nelements"] <= criteria["num_sites"][1]): 

            return False 

        if row["is_magnetic"] and criteria["num_magnetic_sites"][0] == 0: 

            return False 

    except: 

        return False 

    return True 

 



summary_data["implant_suitable"] = summary_data.apply(is_implant_suitable, axis=1) 

 

# Step 3: Select features 

features = ["density", "poisson_ratio", "band_gap", "energy_above_hull", "is_magnetic"] 

df_clean = summary_data.dropna(subset=features) 

X = df_clean[features] 

y = df_clean["implant_suitable"] 

 

# Step 4: Train/test split and model 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

model = DecisionTreeClassifier(random_state=42) 

model.fit(X_train, y_train) 

 

# Step 5: Evaluate 

accuracy = accuracy_score(y_test, model.predict(X_test)) 

print(f"✅ Model trained. Accuracy: {accuracy:.2f}") 

 

# Preview data 

summary_data.head() 

 

 

 

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay 



import matplotlib.pyplot as plt 

 

# Step 6: Confusion Matrix 

y_pred = model.predict(X_test) 

cm = confusion_matrix(y_test, y_pred) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_) 

disp.plot() 

plt.show() 

 

 


